Demystifying environmental impact of ICT

Matti Pärssinen D.Sc (Tech), MBA, Visiting Scholar Department of Communications and Networks

Aalto University

Director of Autonomio research centre

Head of Telia One Service Management Office Telia Company

Content

Background

ICT energy consumption

Future research

What can I do?

Research Background

Netti syö kasvavalla tahdilla sähköä ja suurin syyllinen ovat nettivideot – "Epämiellyttävä totuus, josta ei haluta puhua"

Tietotekniikka-alan hiilidioksidipäästöt ovat jo kovemmat kuin lentoliikenteellä.

Hiilijalanjälki 26.6.2019 klo 05.45 päivitetty 1.7.2019 klo 21.47

ICT-ilmastotalkoot tapahtuvat konesaleissa

Alati kasvava osuus maailman sähköstä kuluu tietotekniikan pyörittämiseen. Matti Pärssinen tutki väitöstyössään, miten leikata tietotekniikan ympäristökuormaa.

Mikä on verkkovideon katselemisen hiilijalanjälki? HS selvitti

16.7. 2:00 Tunnin verkkovideon katsomisen päästöt vaihtelevat. Ne vastaavat muutaman pysäkin bussimatkaa tai köröttelyä Helsingistä Nurmijärvelle.

KARI HAAKANA

Kuinka paljon sähköä Areena ja sen käyttö kuluttavat? Mikä on Areenan hiilijalanjälki? Tarkkaa tietoa ei luultavasti ole kenelläkään, mutta jonkinlaisia arvioita voi esittää.

TIEDE

ANALYYSI Tutkija haluaa, että kohua herättänyttä videostriimauksen päästöarviota tarkennetaan: "Laskelmissa on ainakin 100-kertainen virhe"

1.7.2019 21:36

ENERGIA

Main factors affecting ICT energy consumption

Scope of the research: Traditional ICT services (IoT ja industrial automation are scoped out)

ICT Energy Consumption

New method

The total energy consumption of ICT (TWh)

n= 1M rounds, 200 bins 12,000 10,000 8,000 kernel density 6,000 4,000 2,000 0 900 1,000 1,100 1,200 1,300 TWh

1058 TWh of electricity

136 Loviisa nuclear power plants *

179 times the 2018 wind power capacity of Finland 2018 **

Comparable to yearly domestic electricity consumption of Japan***

1 TWh = 1 000 000 000 000 Wh

* https://www.fortum.fi/tietoa-meista/yhtiomme/energiantuotantomme/voimalaitoksemme/loviisan-voimalaitos

** https://fi.wikipedia.org/wiki/Tuulivoima_Suomessa

*** https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html

The total energy consumption of programmatic online advertising (TWh)

https://github.com/3mission/energysim

Future Research

The shape of things to come...

AUTONOMIO

Want to contribute? Please contact matti.a.parssinen@aalto.fi

www.cybercontrols.org

Energy efficiency in deep learning Does more energy mean better results?

'n': [10000, 20000, 30000, 40000, 50000, 60000, 70000], # sample size 'network': ['conv2d', 'dense'], # type of network architecture 'hidden_conv': [0, 1, 2, 3], # number of hidden convolutional layers 'hidden_dense': [1, 2, 3, 4, 5], # number of hidden dense layers 'neurons_conv': [32, 64, 128, 256], # number of neurons in convolutional layers 'neurons_dense': [32, 64, 128, 256], # number of neurons in dense layers 'epochs': [5, 10, 15, 20] # number of epochs **Experiment:** N = 2825 permutations, val_acc >= $0.99 \rightarrow n = 127$

Ws is measured from NVIDIA 2080 Ti power_draw

15

What can I do?

EVERY ACTION COUNTS

NOT RELATIVE TO ANYTHING